Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

1-(4-Methoxyphenyl)-3-(1H-1,2,4-triazol-1-yl)-propan-1-one

Jun Wan, Chun-Li Li, Xue-Mei Li and Shu-Sheng Zhang*

College of Chemistry and Molecular
Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong,
People's Republic of China
Correspondence e-mail:
zhangshush@public.qd.sd.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.040$
$w R$ factor $=0.112$
Data-to-parameter ratio $=10.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title compound, $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$, molecules are linked into layers parallel to $(\overline{1} 01)$ by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The packing is further stabilized by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Comment

Many triazole compounds have good fungicidal and plant growth regulating activities (Xu et al., 2002). In addition, according to empirical data (Xu et al., 2004), the presence of an accessible triazole ring is conducive to improvement of the biological activity. To explore this idea, the title compound, (I), was synthesized and an X-ray crystallographic analysis was undertaken to establish the structure.

(I)

The bond lengths and angles in (I) are within normal ranges (Allen et al., 1987) and comparable with those in a related compound (Xu et al., 2004). The bond distances in the triazole ring show a character intermediate between single and double bonds (Table 1). The non-H atoms of the molecule are nearly coplanar (r.m.s. deviation $=0.129 \AA$), with a dihedral angle between the two aromatic rings of $11.15(7)^{\circ}$. In the crystal structure, molecules are linked by $\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O} 2^{\mathrm{i}}$ and $\mathrm{C} 12-$ $\mathrm{H} 12 \cdots \mathrm{O} 1^{\text {ii }}$ intermolecular hydrogen bonds to form a layer parallel to ($\overline{1} 01$) (Fig. 2; for symmetry codes see Table 2) The packing is further stabilized by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions involving the benzene ring.

Experimental

The title compound was prepared according to the literature method of Shi et al. (1996). Colourless single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetatepetroleum ether ($1: 1 \mathrm{v} / \mathrm{v}$) solution over a period of two weeks.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \\
& M_{r}=231.25 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=8.2642(13) \AA \\
& b=11.4273(18) \AA \\
& c=12.0990(19) \AA \\
& \beta=94.709(2) \AA \\
& V=1138.7(3) \AA^{\circ} \\
& Z=4
\end{aligned}
$$

$$
D_{x}=1.349 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 3530

reflections

$\theta=2.5-25.9^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.42 \times 0.33 \times 0.21 \mathrm{~mm}$

Received 5 January 2005
Accepted 7 January 2005 Online 15 January 2005

Figure 1
The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Data collection

Bruker SMART 1000 CCD areadetector diffractometer ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.961, T_{\text {max }}=0.980$
6241 measured reflections
2238 independent reflections
1976 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.014$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-9 \rightarrow 10$
$k=-14 \rightarrow 8$
$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0705 P)^{2} \\
&+0.1229 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.15 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.26 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 2
A view down the a axis of the layered structure of (I). Hydrogen bonds are indicated by dashed lines.
structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This project was supported by the Project of Educational Administration of Shandong Province (No. J04B12) and the National Natural Science Foundation of China (Nos. 20275020 and 20475030).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS, Inc., Madison, Wisconsin, USA.
Shi, Y. N., Yang, Y., Fang, J. X. \& Lu, W. S. (1996). Chem. J. Chin. Univ. 17, 1578-1582.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Xu, L. Z., Jiao, K., Zhang, S. S. \& Kuang, S. P. (2002). Bull. Korean Chem. Soc. 23, 1699-1701.
Xu, L. Z., Zhang, S. S., Niu, S. Y., Qin, Y. Q., Li, X. M. \& Jiao, K. (2004). Molecules, 9, 913-921.

